

MASTER - Sciences et génie des matériaux

Design des surfaces et matériaux innovants (DSMI)

Pré-requis obligatoires

• Sciences et génie des matériaux, physico-chimie.

Pré-requis recommandés

Mention(s) de licence(s) conseillée(s) pour accéder au M1:

- Licence de Physique;
- Licence de Physique-Chimie ;
- icence de Chimie-Physique ;
- Licence Science des Matériaux ;
- Licence de Chimie des Matériaux.

Langue du parcours						
ECTS						
Volume horaire						
CI: 0h	CM:0h					
Formation initiale						
Formation continue						
Apprentissage						
Contrat de professionnalisation						
Stage : (durée en semaines)						
	nalisation					

Autres pré-requis (disciplines, matières, enseignements, recommandés): connaissances générales en physique, chimie, physique-chimie, initiation aux matériaux.

Objectifs du parcours

Les matériaux hautes performances et les matériaux actifs sont au cœur des mutations technologiques et sociétales actuelles visant à optimiser les performances tout en limitant les impacts environnementaux. L'objectif de ce parcours est de comprendre et maîtriser la mise en œuvre et la caractérisation de nouvelles surfaces, toutes gammes de matériaux confondues (métaux, verres/céramiques, polymères).

Cette formation propose aux étudiant.e.s d'acquérir les compétences clés théoriques et expérimentales liées au design des surfaces (étude des fonctionnalisations physico-chimiques et des texturations de surfaces) et aux matériaux innovants (systèmes dits intelligents dont la réponse physique, mécanique, chimique s'adapte à un changement de son environnement). La formation bénéficie des équipements scientifiques des laboratoires associés à la <u>Fédération de Recherche Matériaux et Nanosciences</u> Grand Est sur lesquels une initiation aux techniques et méthodes de caractérisation des surfaces est réalisée (~50 h de TP).

L'objectif est de former des cadres de niveau ingénieur dans le domaine des matériaux hautes performances ou actifs avec une orientation spécifique surfaces et revêtements pouvant opérer :

- soit en milieu industriel dans un large champ d'applications (santé, énergie, habitat, transport, sécurité, électronique...);
- soit poursuivre des études doctorales de caractère fondamental ou appliqué.

Par ailleurs, cette formation bénéficie d'un partenariat de près de 20 ans avec l'Institut National des Sciences Appliquées (INSA) de Strasbourg (certains enseignements sont ceux de l'INSA). Cette co-accréditation entraine que le diplôme délivré porte la mention Unistra et INSA.

Compétences à acquérir

- La capacité à mobiliser des connaissances scientifiques aussi larges et diversifiées que possible ;
- Les compétences techniques au laboratoire ;
- La capacité à produire une étude bibliographique claire et pertinente ;
- La maîtrise d'outils informatiques au delà des bases triviales ;
- La capacité à travailler en équipe ;
- Les compétences en communication (langues étrangères en particulier) ;
- La capacité à prendre en compte la pertinence sociétale de la recherche et son impact sur l'environnement ;
- Les aptitudes personnelles telles que la créativité, l'ouverture d'esprit, la motivation, l'adaptabilité.

Poursuite d'études

L'étudiant·e peut poursuivre ses études par un doctorat dans la discipline pour atteindre la R&D de grands groupes industriels ou la recherche académique. L'étudiant·e peut également poursuivre par un master permettant d'atteindre une carrière plus technico-commerciale.

Plus globalement, cette formation permet aux étudiants une insertion à la fois en milieu académique (avec la préparation d'une thèse de doctorat au sein d'un laboratoire en sciences des matériaux, des polymères ou de surface ou encore des procédés au sens

large), mais aussi, une insertion directe dans le milieu industriel (chef de projet R&D, responsable de laboratoire de recherche, ingénieur projet, chef de projet industriel, responsable de services techniques, ingénieur procédés et environnement, ingénieur qualité, ingénieur technico-commercial, etc.) dans les secteurs variés des matériaux fonctionnels et des nouvelles technologies. Les secteurs d'insertion ceux du transport, de l'horlogerie, des traitements de surfaces, de l'environnement, de l'habitat, etc. Les secteurs émergents sont ceux aux interfaces : fonctionnalisation pour biocompatibilité des dispositifs médicaux implantables, fonctionnalisation de surface pour dépollution de l'air...

Codes ROME

- H1206 Management et ingénierie études, recherche et développement industriel
- H1501 Direction de laboratoire d'analyse industrielle
- K2108 Enseignement supérieur
- K2402 Recherche en sciences de l'univers, de la matière et du vivant
- H2502 Management et ingénierie de production

Modalités pédagogiques

- Conditions d'organisation du programme en alternance: du 1er septembre au 15 janvier : 1 semaine en entreprise / 3 semaines à la Faculté ; après le 15 janvier jusqu'à la fin du contrat : temps plein en entreprise ;
- Organisation des enseignements: CM, TD, TP, projet;
- Modalités d'enseignement : présentiel.

Contact

 $Christian\ Gauthier: \underline{christian.gauthier@ics-cnrs.unistra.fr}$

Master 1 - Sciences et génie des matériaux (SGM)

Semestre 1 - Sciences et génie des matériaux (tronc commun)

	ECTS	СМ	CI	TD	TP	TE	Stage
UE 1 - Semestre 1 - Identification et caractérisation des matériaux	6 ECTS		48 h				
Matériaux - introduction			24 h				
Structure et diffraction			24 h				
UE 2 - Semestre 1 - Propriétés électroniques et dynamiques des matériaux	6 ECTS	24 h		24 h			
Propriétés électroniques et dynamiques des matériaux		24 h		24 h			
UE 3 - Semestre 1 - TP physique et initiation salle blanche	3 ECTS				37.5 h		
TP physique et salle blanche					37.5 h		
UE 4 - Semestre 1 - UE obligatoires à choix (5 au choix)	15 ECTS						
Physique statistique		16 h		16 h			
Mécanique quantique		20 h		12 h			
Nanomatériaux		20 h					
Composites		3 h		24 h			
Chimie organique			24 h				
Chimie inorganique			24 h				
Rheology		12 h		6 h			
Polymer science		16 h		6 h			

Semestre 2 - Sciences et génie des matériaux (tronc commun)

	ECTS	СМ	CI	TD	TP	TE	Stage
UE 1 - Semestre 2 - Propriétés optiques et magnétiques des matériaux	3 ECTS		24 h				
Propriétés optiques et magnétiques des matériaux			24 h				
UE 2 - Semestre 2 - Matériaux Nanostructurés	3 ECTS		24 h				
Matériaux nanostructurés			24 h				
UE 3 - Semestre 2 - TP matériaux	3 ECTS				40 h		
TP Chimie des matériaux					40 h		
UE 4 - Semestre 2 - Anglais	2 ECTS			16 h			
Anglais				16 h			
UE 5 - Semestre 2 - Stage	13 ECTS			6 h	12 h		8 sem
Stage							8 sem
Préparation au stage et méthodologie bibliographique				6 h	12 h		
UE 6 - Semestre 2 - UE obligatoires à choix (2 au choix)	6 ECTS						
Techniques avancées de caractérisation		20 h					
Bioplastiques et cycle de vie		3 h		24 h			
Applications aux semi-conducteurs : du matériaux aux dispositifs		22 h					
Matériaux innovants et intelligents		20 h					
UE 7 - Semestre 2 - UE facultative au delà de 30 ECTS	3 ECTS						
Stage volontaire de recherche							8 sem

Master 2 - Design des surfaces et matériaux innovants (DSMI) - Faculté physique & ingénierie

Semestre 3 - Design des surfaces et matériaux innovants - Faculté de physique & ingénierie

	ECTS	СМ	CI	TD	TP	TE	Stage
UE 1 - Semestre 3 - Surfaces et design	3 ECTS	31 h		9 h			
Surfaces, texturations et matériaux innovants		6 h					
Texturation physico-chimique de surfaces		10 h					
Mousses		7.5 h		4.5 h			
Fabrication additive		7.5 h		4.5 h			
UE 2 - Semestre 3 - Méthodes de préparation des couches minces organiques et inorganiques	3 ECTS	6 h		4.5 h	24 h		
Revêtements et traitements de surface		6 h		4.5 h	8 h		
Dépôts de couches minces					16 h		
UE 3 - Semestre 3 - Caractérisation des surfaces	6 ECTS	34 h			28 h		
Techniques de caractérisation des surfaces		6 h					
Diffraction des rayons X		8 h			8 h		
Microscopie électronique à balayage		4 h			4 h		
Microscopie électronique à transmission		4 h			8 h		
Microscopies champ proche		4 h			8 h		
Spectroscopies d'électrons		8 h					
UE 4 - Semestre 3 - Endommagements de surfaces	6 ECTS	26 h		10.5 h	18 h		
Surfaces métalliques - ruine		6 h		6 h	6 h		
Surfaces métalliques - corrosion		6 h		4.5 h	8 h		
Surfaces organiques - tribologie		14 h			4 h		
UE 5 - Semestre 3 - Simulations	4 ECTS	15 h			21 h		
Mécanique numérique des solides déformables		3 h			21 h		
Nanomanufacturing et semiconducteurs industriels		12 h					
UE 6 - Semestre 3 - Cas d'applications	3 ECTS	28 h					
Caractérisation des matériaux semi-conducteurs et dispositifs élémentaires		12 h					
Innovation responsable : éthique et enjeux de l'ingénierie des matériaux		16 h					
UE 7 - Semestre 3 - Ouverture professionnelle	3 ECTS	20 h		47 h			
Plan d'expérience - Qualité		20 h		8 h			
Séminaires industriels				35 h			
Prêt pour l'emploi Espace avenir				4 h			
UE 8 - Semestre 3 - Anglais	2 ECTS			16 h		60 h	
Anglais - S3 Master				16 h		60 h	

Semestre 4 - Design des surfaces et matériaux innovants - Faculté de physique & ingénierie

	ECTS	СМ	CI	TD	TP	TE	Stage
UE 1 - Semestre 4 - Projet de Recherche Technologique	4 ECTS	50 h					
Projet de Recherche Technologique		50 h					
UE 2 - Semestre 4 - Stage	24 ECTS						20 sem
Stage							20 sem
UE 3 - Semestre 4 - Valorisation de stage	2 ECTS			12 h			
Valorisation de stage				12 h			

Master 2 - Design des surfaces et matériaux innovants (DSMI) - INSA

Semestre 3 - Design des surfaces et matériaux innovants - INSA

	ECTS	СМ	CI	TD	TP	TE	Stage
UE 1 - Semestre 3 - Surfaces et design	5 ECTS	35 h		9 h			
Surfaces, Texturations et Matériaux innovants		6 h					
Texturation physico-chimique de surfaces		14 h					
Mousses		7.5 h		4.5 h			
Fabrication additive		7.5 h		4.5 h			
UE 2 - Semestre 3 - Méthodes de préparation des couches minces organiques et inorganiques	3 ECTS	6 h		4.5 h	8 h		
Revêtements et traitements de surface		6 h		4.5 h	8 h		
UE 3 - Semestre 3 - Caractérisation des surfaces	5 ECTS	20 h			16 h		
Diffraction des rayons X		8 h			8 h		
Microscopie électronique à balayage		4 h			8 h		
Spectroscopies d'électrons		8 h					
UE 4 - Semestre 3 - Endommagements de surfaces	6 ECTS	26 h		10.5 h	18 h		
Surfaces métalliques - ruine		6 h		6 h	6 h		
Surfaces métalliques - corrosion		6 h		4.5 h	8 h		
Surfaces organiques - tribologie		14 h			4 h		
UE 5 - Semestre 3 - Simulations	3 ECTS	3 h			21 h		
Mécanique des solides déformables		3 h			21 h		
UE 6 - Semestre 3 - Cas d'applications	3 ECTS	12 h					
Applications des couches minces pour l'optique		12 h					
UE 7 - Semestre 3 - Ouverture professionnelle	3 ECTS						
Projet S9							
UE 8 - Semestre 3 - Anglais	2 ECTS			28 h			
Langues 9				28 h			

Semestre 4 - Design des surfaces et matériaux innovants - INSA

	ECTS	CM	CI	TD	TP	TE	Stage
UE 1 - Semestre 3 - Projet de Recherche Technologique	4 ECTS	42 h					
Projet de Recherche Technologique		42 h					
UE 2 - Semestre 4 - Stage	26 ECTS						20 sem
Stage							20 sem
UE 3 - Semestre 4 - Valorisation de stage				12 h			
Valorisation de stage				12 h			